
Perseus Audit

HNC Coin Audit October 2021

Contents

1

Introduction, 2 Scope, 4

Synopsis, 6 Low Severity, 8

Conclusion, 16

Introduction

Audit:

In October 2021 Perseus’s audit report division performed an audit for
the HNC Coin source code.

https://github.com/HellenicCoin-HNC

HNC Coin:

HNC Coin was established in 2015. First block was generated on Feb 8th
2015. The initial blockchain was a fork of Litecoin and after the last hard
fork in July 2021 it became a fork of Dash Coin, focusing on maximizing
safety and speed of transactions.

2

Introduction

Overview:

Information:
Name: HNC Coin

Supply:
Current: 93,486,639 HNC Coins
Max Supply: 100,000,000 HNC Coins

Explorers:
https://explorer.hnc-coin.com/

Websites:
https://hnc-coin.com

Links:
https://github.com/HellenicCoin-HNC

3

Audit Report Scope

Scope of services to be provided:
- Setup, compiling and test synchronization

- Preliminary Code Review

- Manual review line by line to identify any issues

- Live testing

4

Audit Report Scope

Categories:

High Severity:

High severity issues opens the code up for exploitation from malicious
actors. We do not recommend using the code with high severity issues.

Medium Severity Issues:

Medium severity issues are errors found in the code that hampers the
effectiveness of the code and may cause outcomes when interacting with
the application. It is still recommended to fix these issues.

Low Severity Issues:

Low severity issues are warning of minor impact on the overall integrity
of the code. These can be fixed with less urgency.

5

Audit Report

8 8 0

800

Identified Confirmed Critical

High Medium Low

Analysis:
https://github.com/HellenicCoin-HNC/source-code

Risk:
Low

6

Audit Report

Lines analyzed: 3824833
Physical Source Lines of Code (SLOC): 2793440

Minimum risk level: 1 (Low)

7

Audit Report

Low Severity Issues:

Setup, compiling and test synchronization:

Wrong file permission:

/autogen.sh
mode 100644
new mode 100755

/depends/config.guess
mode 100644
new mode 100755

/depends/config.sub
mode 100644
new mode 100755

/share/genbuild.sh
mode 100644
new mode 100755

8

Audit Report

Low Severity Issues:

(buffer) strlen: Does not handle strings that are not \0-
terminated (it could cause a crash if unprotected).:

src/util.cpp:579:
if (pszHome == NULL || strlen(pszHome) == 0)

src/utilstrencodings.cpp:168:
vchRet.reserve(strlen(p)*3/4);

src/utilstrencodings.cpp:321:
vchRet.reserve((strlen(p))*5/8);

src/utilstrencodings.cpp:427:
if (str.size() != strlen(str.c_str()))

src/wallet/db.cpp:519:
strncmp(ssKey.data(), pszSkip, std::min(ssKey.size(), strlen(pszSkip))) == 0)

src/univalue/lib/univalue.cpp:25:
if (str.size() != strlen(str.c_str()))

src/stacktraces.cpp:94:
return strlen(buf);

src/rest.cpp:100:
if (strlen(rf_names[i].name) > 0) {

src/chainparams.cpp:29:
txNew.vin[0].scriptSig = CScript() << 486604799 << CScriptNum(4) <<
std::vector<unsigned char>((const unsigned char*)pszTimestamp, (const
unsigned char*)pszTimestamp + strlen(pszTimestamp));

src/base58.cpp:34:
int size = strlen(psz) * 733 /1000 + 1; // log(58) / log(256), rounded up.

9

Audit Report

Low Severity Issues:

(port) snprintf: On some very old systems, snprintf is
incorrectly implemented and permits buffer overflows;
there are also incompatible standard definitions of it.
Check it during installation, or use something else.

src/test/dbwrapper_tests.cpp:280:
snprintf(buf, sizeof(buf), "%d", x);

src/test/dbwrapper_tests.cpp:296:
snprintf(buf, sizeof(buf), "%d", seek_start);

src/test/dbwrapper_tests.cpp:301:
snprintf(buf, sizeof(buf), "%d", x);

10

Audit Report

Low Severity Issues:

(buffer) strncpy: Easily used incorrectly; doesn't always \0-
terminate or check for invalid pointers.

src/protocol.cpp:197:
strncpy(pchCommand, pszCommand, COMMAND_SIZE);

11

Audit Report

Low Severity Issues:

(access) umask: Ensure that umask is given most
restrictive possible setting (e.g., 066 or 077).

src/init.cpp:1064:
umask(077);

12

Audit Report

Low Severity Issues:

(misc) fopen: Check when opening files - can an attacker
redirect it (via symlinks), force the opening of special file
type (e.g., device files), move things around to create a
race condition, control its ancestors, or change its
contents?.

src/addrdb.cpp:40:
FILE *file = fopen(pathTmp.string().c_str(), "wb");

src/addrdb.cpp:65:
FILE *file = fopen(pathBanlist.string().c_str(), "rb");

src/addrdb.cpp:137:
FILE *file = fopen(pathTmp.string().c_str(), "wb");

src/addrdb.cpp:162:
FILE *file = fopen(pathAddr.string().c_str(), "rb");

src/util.cpp:659:
FILE* configFile = fopen(GetConfigFile(confPath).string().c_str(), "a");

src/util.cpp:695:
FILE* file = fopen(path.string().c_str(), "w");

src/util.cpp:845:
file = fopen(pathLog.string().c_str(), "w");

13

Audit Report

Low Severity Issues:

(buffer) char: Statically-sized arrays can be overflowed.
Perform bounds checking, use functions that limit length,
or ensure that the size is larger than the maximum
possible length.

src/util.cpp:861:
char pszPath[MAX_PATH] = "";

src/util.cpp:899:
char name[16];

src/utilstrencodings.cpp:35:
const signed char p_util_hexdigit[256] =

src/utilstrencodings.h:99:
static const char hexmap[16] = { '0', '1', '2', '3', '4', '5', '6', '7',

src/validation.cpp:4209:
unsigned char buf[CMessageHeader::MESSAGE_START_SIZE];

src/wallet/crypter.cpp:27:
unsigned char buf[CSHA512::OUTPUT_SIZE];

src/protocol.h:40:
typedef unsigned char MessageStartChars[MESSAGE_START_SIZE];

src/pubkey.cpp:30:
unsigned char tmpsig[64] = {0};

14

Audit Report

Low Severity Issues:

(buffer) memcpy: Does not check for buffer overflows
when copying to destination. Make sure destination can
always hold the source data.

src/prevector.h:169, 186:
memcpy(dst, src, size() * sizeof(T));

src/pubkey.cpp:140:
memcpy(tmpsig + 32 - rlen, input + rpos, rlen);

src/pubkey.cpp:152:
memcpy(tmpsig + 64 - slen, input + spos, slen);

src/stacktraces.cpp:168:
memcpy(&context, pContext, sizeof(CONTEXT));

src/streams.h:59:
memcpy(vchData.data() + nPos, reinterpret_cast<const unsigned
char*>(pch), nOverwrite);

src/streams.h:477:
unsigned char data[4096];

15

Perseus Audit

Disclaimer

Perseus audit is not a security warranty, investment advice, or
an endorsement of the HNC Coin platform. This audit does
not provide a security or correctness guarantee of the audited
code. The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based on
them. Securing code is a multistep process. One audit cannot
be considered enough. We recommend that the the HNC Coin
team put in place a bug bounty program to encourage further
analysis of the code by other third parties.

16

Conclusion

We performed the procedures as laid out in the scope of the audit and
there were 8 findings, 8 low. The medium risk issues do not pose a
security risk as they are best practice issues that is why the overall risk
level is low.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

